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Abstract

In this paper we extend the Lagrangian duality theory for convex optimization problems
to incorporate approximate solutions. In particular, we generalize well-known relationships
between minimizers of a convex optimization problem, maximizers of its Lagrangian dual, saddle
points of the Lagrangian, Kuhn-Tucker vectors, and Kuhn-Tucker conditions to incorporate
approximate versions.

1 Introduction

Duality theory provides a rich framework for the development of solution methods for convex
optimization problems. Key components of this theory include a primal optimization problem, a
Lagrangian defined on the space of primal and dual variables, a dual optimization problem defined
on the space of dual variables (i.e. Lagrange multipliers), and Kuhn—Tucker conditions defined
on the space of primal and dual variables. Solution methods include primal methods which work
directly in the space of primal variables; dual methods which solve a dual optimization problem
and then construct a primal solution from a dual solution; and primal-dual methods which solve
for the primal and dual variables simultaneously. Dual and primal-dual methods are designed
to find points that either satisfy the Kuhn—Tucker conditions or correspond to a saddle of the
Lagrangian. Although much of existing duality theory assumes that these methods produce exact
solutions, in practice it is more common to produce approximate solutions. Indeed, many practical
algorithms do not converge to an exact solution in a finite number of iterations and therefore
produce approximate solutions. Moreover, a simpler algorithm which produces an approximate
solution is often utilized instead of a more complex algorithm which, in principle, produces an
exact solution. More generally, practical algorithms operate with finite precision arithmetic and
therefore the accuracy of their solutions is limited. Thus there is a need for a duality theory for
approximate solutions. In particular when a dual method is used there is a need to know how
best to construct an approximate primal solution from an approximate dual solution, and when a
primal-dual method is used there is a need to relate the accuracy with which the Kuhn—Tucker
conditions or the saddle point problem are solved to the accuracy of the corresponding approximate
primal solution. Although there has been some work in this direction (See e.g. [1] for an approximate
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Kuhn—Tucker Theorem and [2] for a variational principle for approximate minimizers) we consider a
general treatment of duality theory for approximate solutions. Consequently, this paper is written
as an approximate version of Chapter 28 in “Convex Analysis” by Rockafellar [3] on “Ordinary
Convex Programs and Lagrange Multipliers”. Although we extend to optimization in Hausdorff
locally convex topological vector spaces we did not extend to an infinite number of constraints. We
suspect that such an extension is straightforward along the lines of [4].

2 Main results

We will state and prove an approximate version of the Kuhn-Tucker theorem and other related
results as presented in [3, Chapter 28]. However, first we need to define terminology. Let X
be a Hausdorff locally convex topological vector space, and consider a nonempty closed convex
set C' C X, a set of lower semi-continuous convex functions f; : X — R4 = 0,..,7, and a set
of continuous affine functions f; : X — R ¢ = r + 1,..,m. Throughout we make the following
assumption:

There exists a point z € C' where all of the functions fi, .., f are continuous. (1)

We define a convex programming problem (P) as follows:

min  fo(z)
) st. zeC
(P): F1(5) < 0, () <0 ®
fre1(z) =0, ..., fr(z) = 0.

Let us define C; = {z € X : fi(z) <0},i=1,...,r,and C; ={x € X : fi(z) =0}, i=r+1,..,m,
and Cp =CNCyN---NCp. Throughout we assume that Cy is nonempty. We define the optimal
value

= iInf
V=

for the convex programming problem (P). For € > 0, we define the set of e-minimizers of (P) as
Oc(P) ={z € Cy: folz) < x}g(f;o fo(a') + e} (3)
Let E, ={A€R™:\; >0,i=1,...,r} and define the shorthand
ha(z) == fo(z) + Afi(z) + - Amfm(2).
We define the set of e-Kuhn-Tucker vectors for (P) by
KT, = {AGE,:igthzu—e>—oo}. (4)

Let X* denote the topological dual to X and consider the e-subdifferential of a convex function h
at z defined by

Och(z) == {z" € X" :h(y) > h(z) +2"(y —z) — ¢, Vye X}

where Och(z) := 0 when h(z) is not finite. We note the following important facts concerning the
approximate subdifferential of sums of functions: If A; and he are lower semicontinuous proper
convex functions it is well known that

Oc(h1 + h2) D U {0, h1 + Deyha}- (5)

€1,62>0, €14€2=¢



However, if in addition there exists a point x € X where both h; and ho are finite and one of them

is continuous, then [5, Theorem 2.8.3] shows that

Oe(hi+h) = |J  {8ah1+0ha}

€1,62>0, €14+€2=€

(6)

Let 0 := Jy denote the usual subdifferential. Also, let dh denote the differential of a function h.

For affine continuous functions A we know that we have
h(z) = z*(z) + h(0)

for some z* € X* and that
Oh(z) = dh(z) = z*, Vz e X.

For a subset S C X we let dg(x) denote the indicator function of the set S, i.e.

0, z€S8,
ds(z) = {
o, T ¢S.
We define the set of points which satisfy the e-Kuhn-Tucker conditions as

—e <300 Aifi(w),
KTC, := S (x,\) € Coy x E,: Jec >0, ¢ >0,i=0,..,r, such that >, ;€ +ec < eand

0 € Oeg fo() + D0imy Oc;(Nifi) (@) + 2005, 1y Xidfi(w) + Occ b0 () }

We define the Lagrangian on X x R™ to be

hx(z) A€ E.x € C,
L(z,\) = {—00 AN¢E,z€eC,
00 z ¢ C.

Since C' is nonempty, it follows that

inf L(z,\) =

infohy, X€ FE,,
zeX

—00 A¢ E,.
Moreover, we note the useful identity

sup L(z,A) = fo(z) + d¢, (2),
AER™

from which it follows that

v = inf sup L(z,\).
Z'EX/\ERI:n ( )

We define the set of e-saddle points of L to be

Sade = {(z,)) € X xR™ : L(z,\) —e < L(z,A) <L(z,\)+e V(' ,N)eXxR"}

(7)

(12)

We now prove an approximate version of [3, Theorem 28.3] which provides the basic connections

between the sets O.(P), KT,, KTC,, and Sad,.



Theorem 2.1 For all 0 < € < oo we have:
i) Sade C Og¢(P) x KTy and O(P) x KT, C Sads,.
ii) Sad. C KTCs and KTC, C Sady,.
iii) O(P) x KT, C KTCs. and KTC, C O3 (P) x KTy,.

Remark 2.2 We note that Theorem 2.1 establishes a connection between approximate primal-
dual solutions and approximate primal solutions. That is, if the primal-dual method produces a
(z,\) € Sad, or (z,\) € KTC,, then 2 € Oy (P).

Proof: We proceed by developing an intermediate set I, and proving the intermediate assertions
I. C Sade C Iz, I C O(P) x KT, C Iy, and I C KTC, C I5.. The theorem then follows directly.

Define the intermediate set

I == {(z,)) € Cy x B, : fo(z) < iréth + €} (13)

and suppose that (z,\) € I.. Then z € Cj and the identity (10) implies that L(z,\) < fo(z) for
all X' € R™. Consequently, the definition (13) of I, yields

L(z,\) —e < fo(z) —e < iréth.
In addition, since A € E,, the identity (9) implies that infc hy < L(z, A) so that we obtain
L(z,\') —e < L(z, \).
On the other hand, since A € E,, the identity (9) also implies that
infhy < L(z',)\), Vi'e X
and since x € Cj the definition (13) of I, yields

L(z,\) < fo(z) < iréth +e< L(z',\) +e.

Therefore I, C Sad. Moreover, A € E, implies that for all ' € Cy we have hy(z") < fo(z') so that

infhy <infhy) <inf fp =v < < infh
12 )\_1(190 /\_lélofg I/_fo(I)_lIé \t €

from which we conclude that
—00 < fo(z) <v+e

and therefore
iréth >V —€> —00.

Consequently, I. C O(P) x KT,. In addition,
folz) < infhy +e < ha(z) + €= folz) + D Aifilx) + € < folz) + €
i=1

so that m
—e < )\ﬂz T and A)(z) <infh, +e.
€> ;_1: ( ) /\( ) = IC ATE



The latter inequality is equivalent to
0e 8E(h>\ + 50)(I). (14)

Using the assumption (1) and the sum formula (6) we therefore obtain the existence of ¢; > 0,7 =
0,m, ec >0, Y./~ € + €c = € such that

0 € ey fo(x) + Oe; ALf1)(2) + -+ - Dy, (A frn) (€) + e 0 ().

For the affine functions f;,i = r + 1,m, O, (A\ifi) = d(N\ifi) = Nidfi, so that we conclude that
I. c KTC..

Now suppose that (z,\) € Sad.. The inequality (12) implies that

sup L(z,\) —e < L(z,\) < e+ inf L(z',\)
A eR™ r'eX

and therefore the identities (10) and (9), and the fact that fy(z) € R imply that

infohy, A€ E,,
—00 < folz) +dcy(z) — € < < 00
foll) + by () e_{_oo e

Therefore we conclude that x € Cy, A € E,., and
f()((II) < iICI’fh/\ + 2e.
That is, Sad, C I and we have established I, C Sad, C I,.
Now suppose that (z,\) € O(P) x KT. Then z € Cy, A € E,, and

fo(z) <v+eand igfh)\ZV—e

and therefore
fo(z) < ilcl,th + 2€

and so we conclude that O (P) x KT, C Iy thus establishing I, C O(P) x KT, C Is.

Now suppose that (z,\) € KTC. It is well known that since C' is closed and convex d¢ is a lower
semicontinuous proper convex function. Moreover, the relation (5) applied to the subdifferential
relation of KT C, implies that 0 € d.(h) + d¢)(x) which in turn implies that hy(z) < info hy + €.
Moreover —e < >, X;fi(z) implies that

ha(x) = folw) + > Nifi) > folw) —€
i=1

so that we obtain
folz) < iréth + 2¢
and conclude KT'C, C Iy thus establishing I, C KTC, C Io.. [ ]

We obtain as a corollary the following approximate version of the Kuhn-Tucker Theorem. We
note that Strodiot et al. [1] prove a stronger version of ii) in R".

Corollary 2.3 For all 0 < e < 0o we have:



i) If KT, is not empty, then for all x € O(P) there exists a A such that (x,\) € Sady,.
Conversely, for a fized x, if there exists a X such that (z,\) € Sade then x € Oy (P).

it) If KT, is not empty, then for all x € O (P) there exists a \ such that (z,\) € KTCs.
Conwversely, for a fized x, if there exists a A such that (x,\) € KTC, then = € Oy (P).

We now prove an approximate version of [3, Theorem 28.4] which shows how the optimal value
v relates to the value of the Lagrangian at approximate minimizers and aproximate Kuhn-Tucker
vectors.
Theorem 2.4 For all 0 < € < oo we have:

i) (z,\) € Oc(P) x KT¢ implies that

v—e< L(z,\) <v+e.

i) A € KT if and only if infyex L(z,\) > v — € > —oo and in this case

infsup L — supinf L < e.
sl - supiyfL < e

Proof: Suppose that (z,\) € O,(P) x KT.. Then

L(z,\) = fo(z) + Y Nifi(z) < folz) <v+e
=1

and .
L(z,\) = folx) + Y Aifilz) > v —e
i=1
completes the proof of the assertion i). Now suppose that A € KT,. The identity (9) implies
ﬁDig)f([;(x,)\) = iréth >V —€>—00
and the indentity (11) then implies that

supinf L > v —e =infsupL — ¢
rm X X Rrm

proving the forward part of assertion ii).

Conversely,
—oo < v —e< inf L(z,\)
zeX
and the identity (9) implies that A € E, so that
infhy = inf L(z,\) > v —e> —o0.
c zeX

Consequently A\ € KT, and assertion ii) is proved. |



Let us now consider the Lagrange dual problem

) max g(A)
(D) : st.  AeR™. (15)
with criterion function
g(A) = m}g)f(L(w, A). (16)
The dual optimal value is defined as
v* = sup g(A)
AER™
and the approximate maximizers for the dual problem are defined by
O(D) == {AeR™: g(A) >supycpmg(\)—€ } . (17)

We note that the minmax inequality implies that
vt <.
We can now state the following important corollary to Theorem 2.4.

Corollary 2.5 Consider the Lagrangian dual mazimization problem (15) with concave criterion
function defined in (16). Then O (D) # 0 for all 0 < € < 0o and for all 0 < € < 0o we have:

i) KT, C O.(D).
ii) KT, # ) implies that v > —oo and infx supgm L — suppm infx L < €.
i11) v > —oo and infx supgm L — supgm infx L < € for some 0 < €1 < 00

implies that O (D) C KTy,

Remark 2.6 We note that the assumptions v > —oo and infx supgm L — supgm infx L < € are
equivalent to the assumptions v* > —oo and infx supgm L — supgm infx L < e.

Remark 2.7 The duality gap infy supgm L — supgm infx L can often be proven to be zero (See
e.g. [6, Section 2.3.3]).

Proof of Corollary 2.5: It follows from the min-max inequality that supgm ¢ = supgm infyx L <
infx supgrm L = v and since Cp is nonempty it follows that the righthand side is less than oo.
Consequently O, (D) # () for all 0 < € < co. Now let A € KT, for 0 < € < co. Then Theorem 2.4
and the min-max inequality imply that

g()\):xig)f(L(x,)\) Zl/—e:igl(fsm?n}?L—eZsfélrgigl(fL—e:sIélnIL)g—e

proving assertion i). Assertion ii) follows directly from assertion ii) of Theorem 2.4. For asser-
tion iii), consider A € O, (D) for 0 < € < oco. The assumptions ¥ > —oo and infx supgm L —
suppm infy L < € implies that supgm infx L > —oo. Therefore since A € O.(D) we obtain

inf L = > inf I, — —00.
nf (z,\) g(A)_?lélnIL)Igl( €> —00

Consequently we conclude from the indentity (9) that A € E, and

infhy, =g(\) > supinfL — e > infsupL — €] —e=v —€1 — €
uf /oy g()—RfX > infsup 1 1

and the proof is finished. [ ]



The following corollary is important to produce approximate primal solutions from approximate
dual solutions.

Corollary 2.8 Suppose that 0 < e < oo. Then the following hold:

i) Suppose that we have X\ € O (D). Also suppose that v > —oo and that infx suppm L —
supgpm infx L < € for some 0 < € < oo. When € = 0 suppose further that Oy(P) is
nonempty. Then the set of x for which (x,\) € KTC; is nonempty for all T > 2¢ + 2¢;.

i1) Given a fired A € R™, for every x such that (x,\) € KTC, we have z € Oy (P).

Proof: For the first claim, Corollary 2.5 implies that A € KT¢;,. It follows from v > —oo when
e > 0 and from the monotonicity of O;(P) in 7 when ¢ = 0 that Oy, (P) is nonempty. From
Theorem 2.1 iii) we can conclude that the set of z such that (z,\) € KTC219, is not empty.
The monotonicity of KT'C; in 7 proves the first claim. For the second, observe that for any
(z,A) € KTC, it follows also from Theorem 2.1 iii) that x € Oz (P). [ |

Remark 2.9 We note that Corollary 2.8 provides a mechanism for generating approximate solu-
tions to the primal problem (P) from approximate solutions to its dual (D); Suppose the duality
gap is zero and v > —oo. Then given an e-maximizer A of the dual problem, Corollary 2.8(i) states
that there exists an = such that (z,\) satisfy the approximate Kuhn Tucker equations KT Cy.
Solve these equations for some z and then Corollary 2.8(ii) shows that z is a 4e-minimizer of the
primal problem (P).

Remark 2.10 In the above remark, we mentioned a technique for producing approximate solutions
to the primal problem from approximate solutions to its dual by solving the approximate Kuhn
Tucker equations ezactly. However, this formalism allows approximate solutions to the aproximate
Kuhn Tucker equations in the following way: Choose solution methods such that approximate
solutions to KT'C, are exact solutions to KT'C, for some €' > e.

References

[1] J.-J. Strodiot, V. Hien Nguyen, and N.Heukemes. e-optimal solutions in nondifferentiable convex
programming and some related questions. Mathematical Programming, 25:307-328, 1983.

[2] I. Ekeland. On the variational principle. J. Math. Anal. Appl., 47:324-353, 1974.
[3] R.T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[4] P.P. Varaiya. Nonlinear programming in Banach space. STAM Journal on Applied Mathematics,
15:284-293, 1967.

[5] C. Zalinescu. Convez analysis in general vector spaces. World Scientific, New Jersey, 2002.

[6] V. Barbu and Th. Precupanu. Convezity and Optimization in Banach Spaces. D. Reidel Pub-
lishing Company, Dordrecht, 1986.



